
CSE 451: Operating Systems

Winter 2013

Page Table Management, TLBs

and Other Pragmatics

Gary Kimura

2

Moving now from Hardware to how the

OS manages memory

• Two main areas to discuss

– Page table management, TLBs

What does the OS do with the page tables?

– Paging

What to do when it all doesn’t fit in memory

3

Address translation and page faults

(refresher!)

page

frame 0

page

frame 1

page

frame 2

page

frame Y

…

page

frame 3

physical memory

offset

physical address

page frame # page frame #

page table

offset

virtual address

virtual page #

What mechanism

causes a page fault

to occur?

Recall how address

translation works

4

How does OS handle a page fault?

• Interrupt causes system to be entered

• System saves state of running process, then vectors to

page fault handler routine

– find or create (through eviction) a page frame into which to load

the needed page (1)

• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame (2)

• run some other process while the I/O is going on

– fix up the page table entry

• mark it as “valid,” set “referenced” and “modified” bits to false, set

protection bits appropriately, point to correct page frame

– put the process on the ready queue

5

• (2) Find the needed page on disk and bring it into the

page frame

– processor makes process ID and faulting virtual address

available to page fault handler

– process ID gets you to the base of the page table

– VPN portion of VA gets you to the PTE

– data structure analogous to page table (an array with an

entry for each page in the address space) contains disk

address of page

– at this point, it’s just a simple matter of I/O

• must be positive that the target page frame remains available!

– or what?

6

• (1) Find or create (through eviction) a page frame into

which to load the needed page

– run page replacement algorithm

• free page frame

• assigned but unmodified (“clean”) page frame

• assigned and modified (“dirty”) page frame

– assigned but “clean”

• find PTE (may be a different process!)

• mark as invalid (disk address must be available for subsequent

reload)

– assigned and “dirty”

• find PTE (may be a different process!)

• mark as invalid

• write it out

7

“Issues”

• Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)

– solution: use a hardware cache to absorb page table
lookups

• translation lookaside buffer (TLB)

• Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space

– 32 bit address with 4KB pages = 220 PTEs = 1,048,576 PTEs

– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process

• 25 processes = 100MB of page tables

– 48 bit address, same assumptions, 64GB per page table!

– solution: page the page tables!

• (ouch, my brain hurts …)

8

Paging the page tables 1

• Simplest notion:

– put user page tables in a pageable segment of the system’s

address space

– wire down the system’s page table(s) in physical memory

– allow the system segment containing the user page tables to

be paged

• a reference to a non-resident portion of a user page table is a

page fault in the system address space

• the system’s page table is wired down

– “no smoke and mirrors”

• As a practical matter, this simple notion doesn’t cut

the mustard today

– although it is exactly what VAX/VMS did!

• But it is a useful model for what is actually done

9

Paging the page tables 2

• How can we reduce the physical memory

requirements of page tables?

– observation: only need to map the portion of the address

space that is actually being used (often a tiny fraction of the

total address space)

• a process may not use its full 32/48/64-bit address space

• a process may have unused “holes” in its address space

• a process may not reference some parts of its address space

for extended periods

– all problems in CS can be solved with a level of indirection!

• two-level (three-level, four-level) page tables

10

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:

– master page number, secondary page number, offset

– master PT maps master PN to secondary PT

– secondary PT maps secondary PN to page frame number

– offset and PFN yield physical address

11

Two level page tables

page

frame 0

page

frame 1

page

frame 2

page

frame Y

…

page

frame 3

physical memory

offset

physical address

page frame #

master

page table

secondary page#

virtual address

master page # offset

secondary

page table secondary

page table

page frame

number

12

• Example:

– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?

– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page

– 4KB/4 bytes = 1024 PTEs

– thus master page # is 10 bits (210=1K)

– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary

page table

– hence, each secondary page table has 1024 PTEs and fits in one

page

13

Generalizing

• Early architectures used 1-level page tables

• VAX, X86 used 2-level page tables

• SPARC uses 3-level page tables

• 68030 uses 4-level page tables

• Key thing is that the outer level must be wired down

(pinned in physical memory) in order to break the

recursion – no smoke and mirrors

14

Alternatives

• Hashed page table (great for sparse address spaces)

– VPN is used as a hash

– collisions are resolved because the elements in the linked

list at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)

– one entry per page frame

– includes process id, VPN

– painful to search! (but IBM PC/RT actually did this!)

15

Making it all efficient

• Original page table scheme doubled the cost of

memory lookups

– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!

– two lookups into page table, a third to fetch the data

• How can we make this more efficient?

– goal: make fetching from a virtual address about as efficient

as fetching from a physical address

– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware

• called a translation lookaside buffer (TLB)

• TLB is managed by the memory management unit (MMU)

16

TLBs

• Translation lookaside buffer

– translates virtual page #s into PTEs (page frame numbers) (not
physical addrs, why?)

– can be done in single machine cycle

• TLB is implemented in hardware

– is a fully associative cache (all entries searched in parallel)

– cache tags are virtual page numbers

– cache values are PTEs (page frame numbers)

– with PTE + offset, MMU can directly calculate the PA

– X86 has 128 entries, MIPS 48, PowerPC 64

– SandyBridge has up to 512 entries

• TLBs exploit locality

– processes only use a handful of pages at a time

• can hold the “hot set” or “working set” of a process

– hit rates in the TLB are therefore really important

17

Managing TLBs

• Address translations are mostly handled by the TLB

– >99% of translations, but there are TLB misses occasionally

– in case of a miss, translation is placed into the TLB

• Hardware (memory management unit (MMU))

– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format

– this is how x86 works

• Software loaded TLB (OS)

– TLB miss faults to OS, OS finds right PTE and loads TLB

– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation

• OS gets to pick the page table format

18

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent

– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

• What happens on a process context switch?

– remember, each process typically has its own page tables

– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a

cached PTE must be evicted

– choosing a victim PTE is called the “TLB replacement policy”

– implemented in hardware, usually simple (e.g., LRU)

19

Cool Paging Tricks

• Exploit level of indirection between VA and PA

– shared memory

• regions of two separate processes’ address spaces map to the

same physical frames

– read/write: access to share data

– execute: shared libraries!

• will have separate PTEs per process, so can give different

processes different access privileges

• must the shared region map to the same VA in each process?

– copy-on-write (COW), e.g., on fork()

• instead of copying all pages, created shared mappings of

parent pages in child address space

– make shared mappings read-only in child space

– when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

20

• Memory-mapped files

– instead of using open, read, write, close

• “map” a file into a region of the virtual address space

– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file

• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed

– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

21

Summary

• We know how address translation works in the

“vanilla” case (single-level page table, no fault, no

TLB)

– hardware splits the virtual address into the virtual page

number and the offset; uses the VPN to index the page

table; concatenates the offset to the page frame number

(which is in the PTE) to obtain the physical address

• We know how the OS handles a page fault

– find or create (through eviction) a page frame into which to

load the needed page

– find the needed page on disk and bring it into the page frame

– fix up the page table entry

– put the process on the ready queue

22

• We’re aware of two “gotchas” that complicate things

in practice

– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic

• solution: use a hardware cache (TLB = translation lookaside

buffer) to absorb page table lookups

– the memory required to hold page tables can be huge

• solution: use multi-level page tables; can page the lower levels,

or at least omit them if the address space is sparse

– this makes the TLB even more important, because without it, a

single user-level memory reference can cause two or three or four

page table memory references … and we can’t even afford one!

23

• TLB details

– Implemented in hardware

• fully associative cache (all entries searched in parallel)

• cache tags are virtual page numbers

• cache values are page table entries (page frame numbers)

• with PTE + offset, MMU can directly calculate the physical

address

– Can be small because of locality

• 16-48 entries can yield a 99% hit ratio

– Searched before the hardware walks the page table(s)

• hit: address translation does not require an extra memory

reference (or two or three or four) – “free”

• miss: the hardware walks the page table(s) to translate the

address; this translation is put into the TLB, evicting some other

translation; typically managed LRU by the hardware

24

• TLB details (continued)

– On context switch

• TLB must be purged/flushed (using a special hardware

instruction) unless entries are tagged with a process ID

– otherwise, the new process will use the old process’s TLB entries

and reference its page frames!

