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Moving now from Hardware to how the 

OS manages memory 

• Two main areas to discuss 

– Page table management, TLBs 

What does the OS do with the page tables? 

– Paging 

What to do when it all doesn’t fit in memory 
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Address translation and page faults 
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How does OS handle a page fault? 

• Interrupt causes system to be entered 

• System saves state of running process, then vectors to 

page fault handler routine 

– find or create (through eviction) a page frame into which to load 

the needed page (1) 

• if I/O is required, run some other process while it’s going on 

– find the needed page on disk and bring it into the page frame (2) 

• run some other process while the I/O is going on 

– fix up the page table entry 

• mark it as “valid,” set “referenced” and “modified” bits to false, set 

protection bits appropriately, point to correct page frame 

– put the process on the ready queue 
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• (2) Find the needed page on disk and bring it into the 

page frame 

– processor makes process ID and faulting virtual address 

available to page fault handler 

– process ID gets you to the base of the page table 

– VPN portion of VA gets you to the PTE 

– data structure analogous to page table (an array with an 

entry for each page in the address space) contains disk 

address of page 

– at this point, it’s just a simple matter of I/O 

• must be positive that the target page frame remains available! 

– or what? 
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• (1) Find or create (through eviction) a page frame into 

which to load the needed page 

– run page replacement algorithm 

• free page frame 

• assigned but unmodified (“clean”) page frame 

• assigned and modified (“dirty”) page frame 

– assigned but “clean” 

• find PTE (may be a different process!) 

• mark as invalid (disk address must be available for subsequent 

reload) 

– assigned and “dirty” 

• find PTE (may be a different process!) 

• mark as invalid 

• write it out 
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“Issues” 

• Memory reference overhead of address translation 
– 2 references per address lookup (page table, then memory) 

– solution: use a hardware cache to absorb page table 
lookups 

• translation lookaside buffer (TLB) 

• Memory required to hold page tables can be huge 
– need one PTE per page in the virtual address space 

– 32 bit address with 4KB pages = 220 PTEs = 1,048,576 PTEs 

– 4 bytes/PTE = 4MB per page table 

• OS’s typically have separate page tables per process 

• 25 processes = 100MB of page tables 

– 48 bit address, same assumptions, 64GB per page table! 

– solution: page the page tables! 

• (ouch, my brain hurts …) 
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Paging the page tables 1 

• Simplest notion: 

– put user page tables in a pageable segment of the system’s 

address space 

– wire down the system’s page table(s) in physical memory 

– allow the system segment containing the user page tables to 

be paged 

• a reference to a non-resident portion of a user page table is a 

page fault in the system address space 

• the system’s page table is wired down 

– “no smoke and mirrors” 

• As a practical matter, this simple notion doesn’t cut 

the mustard today 

– although it is exactly what VAX/VMS did! 

• But it is a useful model for what is actually done 
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Paging the page tables 2 

• How can we reduce the physical memory 

requirements of page tables? 

– observation: only need to map the portion of the address 

space that is actually being used (often a tiny fraction of the 

total address space) 

• a process may not use its full 32/48/64-bit address space 

• a process may have unused “holes” in its address space 

• a process may not reference some parts of its address space 

for extended periods 

– all problems in CS can be solved with a level of indirection! 

• two-level (three-level, four-level) page tables 
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Two-level page tables 

• With two-level PT’s, virtual addresses have 3 parts: 

– master page number, secondary page number, offset 

– master PT maps master PN to secondary PT 

– secondary PT maps secondary PN to page frame number 

– offset and PFN yield physical address 
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Two level page tables 
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• Example: 

– 32-bit address space, 4KB pages, 4 bytes/PTE 

• how many bits in offset? 

– need 12 bits for 4KB (212=4K), so offset is 12 bits 

• want master PT to fit in one page 

– 4KB/4 bytes = 1024 PTEs 

– thus master page # is 10 bits (210=1K) 

– and there are 1024 secondary page tables 

• and 10 bits are left (32-12-10) for indexing each secondary 

page table 

– hence, each secondary page table has 1024 PTEs and fits in one 

page 



13 

Generalizing 

• Early architectures used 1-level page tables 

• VAX, X86 used 2-level page tables 

• SPARC uses 3-level page tables 

• 68030 uses 4-level page tables 

• Key thing is that the outer level must be wired down 

(pinned in physical memory) in order to break the 

recursion – no smoke and mirrors 
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Alternatives 

• Hashed page table (great for sparse address spaces) 

– VPN is used as a hash 

– collisions are resolved because the elements in the linked 

list at the hash index include the VPN as well as the PFN 

• Inverted page table (really reduces space!) 

– one entry per page frame 

– includes process id, VPN 

– painful to search!  (but IBM PC/RT actually did this!) 
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Making it all efficient 

• Original page table scheme doubled the cost of 

memory lookups 

– one lookup into page table, a second to fetch the data 

• Two-level page tables triple the cost!! 

– two lookups into page table, a third to fetch the data 

• How can we make this more efficient? 

– goal: make fetching from a virtual address about as efficient 

as fetching from a physical address 

– solution: use a hardware cache inside the CPU 

• cache the virtual-to-physical translations in the hardware 

• called a translation lookaside buffer (TLB) 

• TLB is managed by the memory management unit (MMU) 
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TLBs 

• Translation lookaside buffer 

– translates virtual page #s into PTEs (page frame numbers) (not 
physical addrs, why?) 

– can be done in single machine cycle 

• TLB is implemented in hardware 

– is a fully associative cache (all entries searched in parallel) 

– cache tags are virtual page numbers 

– cache values are PTEs (page frame numbers) 

– with PTE + offset, MMU can directly calculate the PA 

– X86 has 128 entries, MIPS 48, PowerPC 64 

– SandyBridge has up to 512 entries 

• TLBs exploit locality 

– processes only use a handful of pages at a time 

• can hold the “hot set” or “working set” of a process 

– hit rates in the TLB are therefore really important 
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Managing TLBs 

• Address translations are mostly handled by the TLB 

– >99% of translations, but there are TLB misses occasionally 

– in case of a miss, translation is placed into the TLB 

• Hardware (memory management unit (MMU)) 

– knows where page tables are in memory 

• OS maintains them, HW access them directly 

– tables have to be in HW-defined format 

– this is how x86 works 

• Software loaded TLB (OS) 

– TLB miss faults to OS, OS finds right PTE and loads TLB 

– must be fast (but, 20-200 cycles typically) 

• CPU ISA has instructions for TLB manipulation 

• OS gets to pick the page table format 
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Managing TLBs (2) 

• OS must ensure TLB and page tables are consistent 

– when OS changes protection bits in a PTE, it needs to 

invalidate the PTE if it is in the TLB 

• What happens on a process context switch? 

– remember, each process typically has its own page tables 

– need to invalidate all the entries in TLB!  (flush TLB) 

• this is a big part of why process context switches are costly 

– can you think of a hardware fix to this? 

• When the TLB misses, and a new PTE is loaded, a 

cached PTE must be evicted 

– choosing a victim PTE is called the “TLB replacement policy” 

– implemented in hardware, usually simple (e.g., LRU) 
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Cool Paging Tricks 

• Exploit level of indirection between VA and PA 

– shared memory 

• regions of two separate processes’ address spaces map to the 

same physical frames 

– read/write: access to share data 

– execute: shared libraries! 

• will have separate PTEs per process, so can give different 

processes different access privileges 

• must the shared region map to the same VA in each process? 

– copy-on-write (COW), e.g., on fork( ) 

• instead of copying all pages, created shared mappings of 

parent pages in child address space 

– make shared mappings read-only in child space 

– when child does a write, a protection fault occurs, OS takes over 

and can then copy the page and resume client 
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• Memory-mapped files 

– instead of using open, read, write, close 

• “map” a file into a region of the virtual address space 

– e.g., into region with base ‘X’ 

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file 

• initially, all pages in mapped region marked as invalid 

– OS reads a page from file whenever invalid page accessed 

– OS writes a page to file when evicted from physical memory 

• only necessary if page is dirty 
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Summary 

• We know how address translation works in the 

“vanilla” case (single-level page table, no fault, no 

TLB) 

– hardware splits the virtual address into the virtual page 

number and the offset; uses the VPN to index the page 

table; concatenates the offset to the page frame number 

(which is in the PTE) to obtain the physical address 

• We know how the OS handles a page fault 

– find or create (through eviction) a page frame into which to 

load the needed page 

– find the needed page on disk and bring it into the page frame 

– fix up the page table entry 

– put the process on the ready queue 
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• We’re aware of two “gotchas” that complicate things 

in practice 

– the memory reference overhead of address translation 

• the need to reference the page table doubles the memory traffic 

• solution: use a hardware cache (TLB = translation lookaside 

buffer) to absorb page table lookups 

– the memory required to hold page tables can be huge 

• solution: use multi-level page tables; can page the lower levels, 

or at least omit them if the address space is sparse 

– this makes the TLB even more important, because without it, a 

single user-level memory reference can cause two or three or four 

page table memory references … and we can’t even afford one! 
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• TLB details 

– Implemented in hardware 

• fully associative cache (all entries searched in parallel) 

• cache tags are virtual page numbers 

• cache values are page table entries (page frame numbers) 

• with PTE + offset, MMU can directly calculate the physical 

address 

– Can be small because of locality 

• 16-48 entries can yield a 99% hit ratio 

– Searched before the hardware walks the page table(s) 

• hit:  address translation does not require an extra memory 

reference (or two or three or four) – “free” 

• miss:  the hardware walks the page table(s) to translate the 

address; this translation is put into the TLB, evicting some other 

translation; typically managed LRU by the hardware 
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• TLB details (continued) 

– On context switch 

• TLB must be purged/flushed (using a special hardware 

instruction) unless entries are tagged with a process ID 

– otherwise, the new process will use the old process’s TLB entries 

and reference its page frames! 


